
ORNL is managed by UT-Battelle
for the US Department of Energy

Understanding Portability
of a High-Level
Programming Model on
Diverse HPC Architectures

Jeffrey S. VeDer

Seyong Lee, Joel Denny,
Jungwon Kim, et al.

http://ft.ornl.gov vetter@computer.org

Presented to
COEPP
Glendale, AZ

19 Apr 2016

2

ExecuJve Summary

•  Architectures are growing more complex
–  This will get worse; not better

•  Programming systems must provide performance portability (in
addition to functional portability)!!

•  Diverse heterogeneous systems including FPGAs

•  Programming NVM systems is the next major challenge

3

 Current ASCR CompuJng At a Glance

System attributes NERSC
Now

OLCF
Now

ALCF
Now NERSC Upgrade OLCF Upgrade ALCF Upgrades

Planned Installation Edison TITAN MIRA Cori
2016

Summit
2017-2018

Theta
2016

Aurora
2018-2019

System peak (PF) 2.6 27 10 > 30 150 >8.5 180

Peak Power (MW) 2 9 4.8 < 3.7 10 1.7 13

Total system memory 357 TB 710TB 768TB

~1 PB DDR4 + High
Bandwidth Memory

(HBM)+1.5PB
persistent memory

> 1.74 PB DDR4 +
HBM + 2.8 PB

persistent memory

>480 TB DDR4 +
High Bandwidth
Memory (HBM)

> 7 PB High Bandwidth
On-Package Memory

Local Memory and
Persistent Memory

Node performance (TF) 0.460 1.452 0.204 > 3 > 40 > 3 > 17 times Mira

Node processors Intel Ivy
Bridge

AMD
Opteron
Nvidia
Kepler

64-bit
PowerPC

A2

Intel Knights Landing
many core CPUs

Intel Haswell CPU in
data partition

Multiple IBM
Power9 CPUs &
multiple Nvidia
Voltas GPUS

Intel Knights Landing
Xeon Phi many core

CPUs

Knights Hill Xeon Phi
many core CPUs

System size (nodes) 5,600
nodes

18,688
nodes 49,152

9,300 nodes
1,900 nodes in data

partition
~3,500 nodes >2,500 nodes >50,000 nodes

System Interconnect Aries Gemini 5D Torus Aries Dual Rail
EDR-IB Aries 2nd Generation Intel

Omni-Path Architecture

File System
7.6 PB

168 GB/s,
Lustre®

32 PB
1 TB/s,
Lustre®

26 PB
300 GB/s
GPFS™

28 PB
744 GB/s
Lustre®

120 PB
1 TB/s

GPFS™

10PB, 210 GB/s
Lustre initial

150 PB
1 TB/s
Lustre®

Complexity α T

4

•  LT v. TO Cores
–  GPUs (discrete, integrated)
–  FPGAs

•  SIMD/short vector

•  SMT, threading models

•  DVFS (incl Turboboost)

•  Special Purpose
–  RNGs
–  AES, video engines
–  Transactional memory
–  Virtualization support

•  Reconfigurable computing

•  etc

Core, Processor Architectures

http://www.techpowerup.com/img/15-08-18/77a.jpg

http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Pascal-GPU-Chip-
Module.jpg

Skylake

Pascal

5

IntegraJon, M&A Dominate Discussion

6

7

Complex Programming Models

System: MPI, Legion, HPX, Charm++, etc

Low overhead

Resource contention

Locality

Node: OpenMP, Pthreads, U-threads, etc

SIMD

NUMA, HBM

Cores: OpenACC, CUDA, OpenCL, OpenMP4, …
Memory use, coalescing Data orchestration Fine grained parallelism Hardware features

Programming
Heterogeneous Systems

9

•  Vertically integrated toolchain for
programming systems

–  ARES is not trying to build a complete toolchain,
but rather leverage other software

•  Define an open-source, extensible,
universal High-Level Intermediate
Representation (HLIR) leveraging the
widely adopted LLVM infrastructure

•  HLIR Analysis and optimization passes
can be applied to any Frontend

•  HLIR enables higher level analysis and
transformation than low level IRs

•  Lowered to LLVM or native support (e.g.,
CUDA)

ARES HLIR Approach

ARES HLIR

LLVM (or native)

OpenARC,
Flang

OpenARC	Run*me	OpenARC	Compiler	
Output	Codes	OpenARC	

Front-End	OpenACC	

OpenMP	4	

NVL-C	

C	Parser	

Direc9ve	
Parser	

Preprocessor	

General	
Op9mizer	

OpenARC	
Back-End	

Kernels		&	
Host	Program	
Generator	

Device	
Specific	
Op9mizer	

OpenARC	
IR	

LLVM	
Back-End	

Extended	
LLVM	IR	
Generator	

NVL	
Passes	

Standard	
LLVM	
Passes	

Kernels	for	
Target	Devices	

Host	Program	

NVM	 NVM	NVM	 NVM	

NVL	Run9me	

pmem.io	
NVM	Library	

Executable	

OpenARC	
Auto-Tuner	

Tuning	
Configura9on	
Generator	

Search	Space	
Pruner	

CUDA,	OpenCL	
Libraries	

HeteroIR	Common	Run9me	
with	Tuning	Engine	

CUDA	
GPU	

Altera	
FPGA	

AMD	
GPU	

Xeon	
Phi	

Input C Programs

Feedback

Run	

Run	

11

Understanding Performance Portability of
High-level Programming Models for Heterogeneous

Systems
• 

Amit Sabne, Putt Sakdhnagool, Seyong Lee, and Jeffrey S. Vetter. Understanding Portability of a High-level Programming Model on Contemporary Heterogeneous Architectures,
IEEE Micro Volume 35, Issue 4 (DOI: 10.1109/MM.2015.73), 2015.

•  Problem
Directive-based, high-level accelerator programming models such as OpenACC provide code
portability. But how does it fare on performance portability? And what architectural features/compiler
optimizations affect the performance portability? And how much?

•  Solution
–  Proposed a high-level, architecture-independent intermediate language (HeteroIR) to map high-

level programming models (e.g., OpenACC) to diverse heterogeneous devices while maintaining
portability.

–  Using HeteroIR, port and measure the performance portability of various OpenACC applications
on diverse architectures.

•  Results
–  Using HeteroIR, OpenARC ported 12 OpenACC applications to

diverse architectures (NVIDIA CUDA, AMD GCN, and Intel
MIC), and measured the performance portability achieved
across all applications.

–  HeteroIR abstracts out the common architecture functionalities,
which makes it easy for OpenARC (and other compilers) to
support diverse heterogeneous architectures.

–  HeteroIR, combined with rich OpenARC directives and built-in
tuning tools, allows OpenARC to be used for various tuning
studies on diverse architectures.

12

Overall Performance Portability

•  BeUer	perf.	portability	among	GPUs	
•  Lesser	across	GPUs	and	MIC	
•  Main	reasons	

–  Parallelism	arrangement	
–  Compiler	op9miza9ons	:	e.g.	device-

specific	memories,	unrolling	etc.	

Performance
Portability

Matrix

0	

1	

2	

3	

4	

5	

6	

7	

8	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	
JA
CO

BI
	

SR
AD

	
HO

TS
PO

T	
N
W
	

LU
D	

LA
PL
AC

E	
BF
S	

BA
CK

PR
O
P	

KM
EA

N
S	

CF
D	

M
AT

M
U
L	

SP
M
U
L	

JA
CO

BI
	

SR
AD

	
HO

TS
PO

T	
N
W
	

LU
D	

LA
PL
AC

E	
BF
S	

BA
CK

PR
O
P	

KM
EA

N
S	

CF
D	

M
AT

M
U
L	

SP
M
U
L	

JA
CO

BI
	

SR
AD

	
HO

TS
PO

T	
N
W
	

LU
D	

LA
PL
AC

E	
BF
S	

BA
CK

PR
O
P	

KM
EA

N
S	

CF
D	

M
AT

M
U
L	

SP
M
U
L	

Sp
ee
du

p	
of
	B
es
t	C

on
fig

ur
a*

on
	o
ve
r	

Ba
se
lin

e	

Sp
ee
du

p	
w
ith

	re
	

sp
ec
t	t
o	
Be

st
	C
on

fig
ur
a*

on
	

CUDA	Config	 GCN	Config	 MIC	Config	 Best	Config	

11.3x 13.7x 13.8x 22.1x CUDA GCN MIC

Amit Sabne, Putt Sakdhnagool, Seyong Lee, and Jeffrey S. Vetter. Understanding Portability of a High-level Programming Model on
Contemporary Heterogeneous Architectures, IEEE Micro Volume 35, Issue 4 (DOI: 10.1109/MM.2015.73), 2015.

13

Intelligent selecJon of opJmizaJons based on
target architecture

14

OpenACC to FPGA: A Framework for DirecJve-Based High-
Performance Reconfigurable CompuJng

• 

1
4

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE
International Parallel & Distributed Processing Symposium (IPDPS), 2016. (to appear)

•  Problem
–  Reconfigurable computers, such as FPGAs, offer more performance and energy efficiency for

specific workloads than other heterogeneous systems, but their programming complexities and
low portability have limited their deployment in large scale HPC systems.

•  Solution
–  Proposed an OpenACC-to-FPGA translation framework, which performs source-to-source

translation of the input OpenACC program into an output OpenCL code, which is further
compiled to an FPGA program by the underlying backend Altera OpenCL compiler.

•  Impact
–  Proposed translation framework is the first work to use a standard and portable, directive-based,

high-level programming system for FPGAs.
–  Preliminary evaluation of eight OpenACC benchmarks on an FPGA and comparison study on

other accelerators identified that the unique capabilities of an FPGA offer new performance tuning
opportunities different from other accelerators.

	

•  Recent Results
–  Proposed several FPGA-specific OpenACC compiler optimizations and pragma extensions to

achieve higher throughput.
–  Evaluated the framework using eight OpenACC benchmarks, and measured performance

variations on diverse architectures (Altera FPGA, NVIDIA/AMD GPUs, and Intel Xeon Phi).

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

Jacobi MatMul SpMul HotSpot NW SRAD FFT-1D FFT-2D

S
p

e
e
d
u
p

CPU Sequential
CPU OpenMP

Altera FPGA
Xeon Phi

NVIDIA GPU
AMD GPU

15

Reconfigurable CompuJng Tests Performance
Portability in a New Dimension

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE
International Parallel & Distributed Processing Symposium (IPDPS), 2016. (to appear)

Emerging Non-volaJle
Memory Systems

17

Exascale architecture targets circa 2009
2009 Exascale Challenges Workshop in San Diego

System attributes 2009 “Pre-Exascale” “Exascale”
System peak 2 PF 100-200 PF/s 1 Exaflop/s
Power 6 MW 15 MW 20 MW
System memory 0.3 PB 5 PB 32–64 PB
Storage 15 PB 150 PB 500 PB
Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF
Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s
Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)
System size (nodes) 18,700 500,000 50,000 1,000,000 100,000

Node interconnect BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s

IO Bandwidth 0.2 TB/s 10 TB/s 30-60 TB/s

MTTI day O(1 day) O(0.1 day)

Attendees envisioned two possible architectural swim lanes:
1.  Homogeneous many-core thin-node system
2.  Heterogeneous (accelerator + CPU) fat-node system

18

•  HMC, HBM/2/3, LPDDR4, GDDR5X,
WIDEIO2, etc

•  2.5D, 3D Stacking
•  New devices (ReRAM, PCRAM,

STT-MRAM, Xpoint)
•  Configuration diversity

–  Fused, shared memory
–  Scratchpads
–  Write through, write back, etc
–  Consistency and coherence protocols
–  Virtual v. Physical, paging strategies

Memory Systems are Diversifying

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg

https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en

H.S.P. Wong, H.Y. Lee, S. Yu et al., “Metal-oxide RRAM,” Proceedings of the IEEE, 100(6):1951-70, 2012.

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance
Computing,” CiSE, 17(2):73-82, 2015.

19

NVRAM Technology ConJnues to Improve –
Driven by Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

20

Comparison of Emerging Memory
Technologies

Jeffrey Vetter, ORNL
Robert Schreiber, HP Labs

Trevor Mudge, University of Michigan
Yuan Xie, Penn State University

SRAM DRAM eDRAM 2D
NAND
Flash

3D NAND
Flash

PCRAM STTRAM 2D
ReRAM

3D
ReRAM

Data Retention N N N Y Y Y Y Y Y

Cell Size (F2) 50-200 4-6 19-26 2-5 <1 4-10 8-40 4 <1

Minimum F demonstrated
(nm)

14 25 22 16 64 20 28 27 24

Read Time (ns) < 1 30 5 104 104 10-50 3-10 10-50 10-50

Write Time (ns) < 1 50 5 105 105 100-300 3-10 10-50 10-50

Number of Rewrites 1016 1016 1016 104-105 104-105 108-1010 1015 108-1012 108-1012

Read Power Low Low Low High High Low Medium Medium Medium

Write Power Low Low Low High High High Medium Medium Medium

Power (other than R/W) Leakage Refresh Refresh None None None None Sneak Sneak

Maturity

http://ft.ornl.gov/trac/blackcomb

Intel/Micron Xpoint?

21

Caches

Main Memory

I/O Device

HDD

•  Newer technologies
improve
–  density,
–  power usage,
–  durability
–  r/w performance

•  In scalable systems, a
variety of architectures
exist
–  NVM in the SAN
–  NVM nodes in system
–  NVM in each node

As NVM improves, it is working its way toward
the processor core

22

 Current ASCR CompuJng At a Glance

System attributes NERSC
Now

OLCF
Now

ALCF
Now NERSC Upgrade OLCF Upgrade ALCF Upgrades

Planned Installation Edison TITAN MIRA Cori
2016

Summit
2017-2018

Theta
2016

Aurora
2018-2019

System peak (PF) 2.6 27 10 > 30 150 >8.5 180

Peak Power (MW) 2 9 4.8 < 3.7 10 1.7 13

Total system memory 357 TB 710TB 768TB

~1 PB DDR4 + High
Bandwidth Memory

(HBM)+1.5PB
persistent memory

> 1.74 PB DDR4 +
HBM + 2.8 PB

persistent memory

>480 TB DDR4 +
High Bandwidth
Memory (HBM)

> 7 PB High Bandwidth
On-Package Memory

Local Memory and
Persistent Memory

Node performance (TF) 0.460 1.452 0.204 > 3 > 40 > 3 > 17 times Mira

Node processors Intel Ivy
Bridge

AMD
Opteron
Nvidia
Kepler

64-bit
PowerPC

A2

Intel Knights Landing
many core CPUs

Intel Haswell CPU in
data partition

Multiple IBM
Power9 CPUs &
multiple Nvidia
Voltas GPUS

Intel Knights Landing
Xeon Phi many core

CPUs

Knights Hill Xeon Phi
many core CPUs

System size (nodes) 5,600
nodes

18,688
nodes 49,152

9,300 nodes
1,900 nodes in data

partition
~3,500 nodes >2,500 nodes >50,000 nodes

System Interconnect Aries Gemini 5D Torus Aries Dual Rail
EDR-IB Aries 2nd Generation Intel

Omni-Path Architecture

File System
7.6 PB

168 GB/s,
Lustre®

32 PB
1 TB/s,
Lustre®

26 PB
300 GB/s
GPFS™

28 PB
744 GB/s
Lustre®

120 PB
1 TB/s

GPFS™

10PB, 210 GB/s
Lustre initial

150 PB
1 TB/s
Lustre®

Complexity α T

23

OpportuniJes for NVM in Emerging Systems

• Burst Buffers, C/R

•  In-mem
tables

•  In situ visualization

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-
Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015, 10.1109/MCSE.
2015.4.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

Programming NVM
Systems

25

•  Active area of research
–  See survey

•  Architectures will vary dramatically
–  How should we design the node?
–  Portable across various NVM architectures

•  Performance for HPC scenarios
–  Allow user or compiler/runtime/os to

exploit NVM
–  Asymmetric R/W
–  Remote/Local

•  Security
•  Assume lower power costs under

normal usage

•  Correctness and durability
–  Enhanced ECC for NVM devices
–  A crash or erroneous program could

corrupt the NVM data structures
–  Programming system needs to provide

support for this model

•  ACID
–  Atomicity: A transaction is “all or nothing”
–  Consistency: Takes data from one

consistent state to another
–  Isolation: Concurrent transactions appears

to be one after another
–  Durability: Changes to data will remain

across system boots

Design Goals for NVM Programming System

10.1109/TPDS.2015.2442980

MPI and OpenMP do not solve this problem.

OpenARC	Run*me	OpenARC	Compiler	
Output	Codes	OpenARC	

Front-End	OpenACC	

OpenMP	4	

NVL-C	

C	Parser	

Direc9ve	
Parser	

Preprocessor	

General	
Op9mizer	

OpenARC	
Back-End	

Kernels		&	
Host	Program	
Generator	

Device	
Specific	
Op9mizer	

OpenARC	
IR	

LLVM	
Back-End	

Extended	
LLVM	IR	
Generator	

NVL	
Passes	

Standard	
LLVM	
Passes	

Kernels	for	
Target	Devices	

Host	Program	

NVM	 NVM	NVM	 NVM	

NVL	Run9me	

pmem.io	
NVM	Library	

Executable	

OpenARC	
Auto-Tuner	

Tuning	
Configura9on	
Generator	

Search	Space	
Pruner	

CUDA,	OpenCL	
Libraries	

HeteroIR	Common	Run9me	
with	Tuning	Engine	

CUDA	
GPU	

Altera	
FPGA	

AMD	
GPU	

Xeon	
Phi	

Input C Programs

Feedback

Run	

Run	

27

NVL-C: Portable Programming for NVMM
•  Impact

–  Minimal, familiar, programming interface:
–  Minimal C language extensions.
–  App can still use DRAM.

–  Pointer safety:
–  Persistence creates new categories of

pointer bugs.
–  Best to enforce pointer safety constraints

at compile time rather than run time.
–  Transactions:

–  Prevent corruption of persistent memory
in case of application or system failure.

–  Language extensions enable:
–  Compile-time safety constraints.
–  NVM-related compiler analyses and

optimizations.
–  LLVM-based:

–  Core of compiler can be reused for other
front ends and languages.

–  Can take advantage of LLVM ecosystem.

#include <nvl.h>
struct list {
 int value;
 nvl struct list *next;
};
void remove(int k) {
 nvl_heap_t *heap
 = nvl_open("foo.nvl");
 nvl struct list *a
 = nvl_get_root(heap, struct list);
 #pragma nvl atomic
 while (a->next != NULL) {
 if (a->next->value == k)
 a->next = a->next->next;
 else
 a = a->next;
 }
 nvl_close(heap);
}

J. Denny, S. Lee, and J.S. Vetter, “NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile
Main Memory Systems,” in ACM High Performance Distributed Computing (HPDC). Kyoto: ACM, 2016

28

•  Applications extended with
NVL-C

•  Compiled with NVL-C
•  Executed on Fusion ioScale
•  Compared to DRAM
•  Various levels of optimization

Preliminary Results

LULESH XSBENCH

29

Summary

•  Recent trends in extreme-scale HPC paint an ambiguous future
–  Contemporary systems provide evidence that power constraints are driving architectures to

change rapidly

–  Multiple architectural dimensions are being (dramatically) redesigned: Processors, node
design, memory systems, I/O

–  Complexity is our main challenge

•  Applications and software systems are all reaching a state of crisis
–  Applications will not be functionally or performance portable across architectures

–  Programming and operating systems need major redesign to address these architectural
changes

–  Procurements, acceptance testing, and operations of today’s new platforms depend on
performance prediction and benchmarking.

•  We need performance portable programming models now more than ever!

•  Programming systems must provide performance portability (in addition to
functional portability)!!

–  New memory hierarchies with NVM everywhere

–  Heterogeneous systems

30

•  Contributors and Sponsors
–  Future Technologies Group:

http://ft.ornl.gov
–  US Department of Energy Office of

Science
•  DOE Vancouver Project:

https://ft.ornl.gov/trac/vancouver
•  DOE Blackcomb Project:

https://ft.ornl.gov/trac/blackcomb
•  DOE ExMatEx Codesign Center:

http://codesign.lanl.gov
•  DOE Cesar Codesign Center:

http://cesar.mcs.anl.gov/
•  DOE Exascale Efforts:

http://science.energy.gov/ascr/research/
computer-science/

–  Scalable Heterogeneous Computing
Benchmark team: http://bit.ly/shocmarx

–  US National Science Foundation
Keeneland Project:
http://keeneland.gatech.edu

–  US DARPA
–  NVIDIA CUDA Center of Excellence

Acknowledgements

Bonus Material

